Acquired Electronics360


Locating Space Debris with Lasers

06 September 2017

A short-pulse fiber laser was designed for the centimeter-accurate detection of space debris. Source: Fraunhofer IOFA short-pulse fiber laser was designed for the centimeter-accurate detection of space debris. Source: Fraunhofer IOF

Various technologies are being developed by researchers worldwide who are concerned with UFOs in Low Earth Orbit (LEO): uncontrollable flying objects in LEO. The growing volume of orbital space debris poses risks to the survival of satellites and to the safe journey of other spacecraft.

Tracking the exact position of cosmic junk is a crucial first step toward salvaging, recovering or destroying this hazardous waste. A fiber laser that reliably determines the position and direction of UFO movement has been developed by researchers at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena, Germany. The laser system was designed to withstand high radiation levels, temperature fluctuations and other harsh conditions in LEO.

The laser pulse is propagated through a glass fiber-based amplifier in order to analyze space debris over comparatively long distances; thousands of laser pulses per second can be emitted. If one of these pulses encounters an object, part of the radiation is reflected back to a scanner integrated into the system. This time-of-flight data can be converted into distances and 3D coordinates.

The principle—originally developed by researchers of Fraunhofer IOF for Jena-Optronik and the German Aerospace Centre (Deutsches Zentrum für Luft- und Raumfahrt, DLR)—has already been successfully tested during a space transporter's docking maneuver at the International Space Station (ISS). Previously, the laser system had been installed in a sensor of the Thuringian aerospace company Jena-Optronik GmbH and was launched in 2016 with the autonomous supply transporter ATV-5. Jena Optronik's system also excels in energy efficiency: the fiber laser operates at a total power of less than 10 watts—that is significantly less than a commercial laptop.

To contact the author of this article, email

Powered by CR4, the Engineering Community

Discussion – 0 comments

By posting a comment you confirm that you have read and accept our Posting Rules and Terms of Use.
Engineering Newsletter Signup
Get the Engineering360
Stay up to date on:
Features the top stories, latest news, charts, insights and more on the end-to-end electronics value chain.
Weekly Newsletter
Get news, research, and analysis
on the Electronics industry in your
inbox every week - for FREE
Sign up for our FREE eNewsletter


Date Event Location
04-07 Jun 2018 Boston, MA
06-08 Jun 2018 Los Angeles, CA
18-22 Jun 2018 Honolulu, Hawaii
12-16 Aug 2018 Vancouver, Canada
11-13 Sep 2018 Novi, Michigan
Find Free Electronics Datasheets