Semiconductors and Components

EU team demonstrates full data-transfer silicon photonics module delivering 100 Gb/s

23 June 2020

CEA-Leti has announced the demonstration of a fully packaged coarse wavelength division multiplexing (CWDM) silicon photonics optical transceiver module with data transfer of 100 Gb/s per fiber with a low-power-consumption electronic chip co-integrated on the photonic chip, both designed and fabricated by ST Microelectronics. This silicon-photonics-based transceiver multiplexes two wavelengths at 50 Gb/s and is designed to meet the ever-increasing data communication demands and energy use of data centers and supercomputers.

The EU H2020 project, COSMICC, further developed all the required building blocks for a transmission rate of 200 Gb/s and beyond without temperature control with four 50 Gb/s wavelengths and by aggregating a large number of fibers. The key breakthroughs are the development of broadband and temperature-insensitive silicon nitride (SiN) multiplexing components on silicon (Si), the integration of hybrid III-V/Si lasers on the Source: Denis Morel/CEA-LetiSource: Denis Morel/CEA-LetiSi/SiN chips and a new high-count adiabatic fiber-coupling technique via SiN and polymer waveguides.

This demonstration opens the way to technology that allows a reduction in the cost, the power consumption and the packaging complexity and opens the way to reaching a very high aggregated data rate beyond terabits per second (Tb/s).

Starting with ST Microelectronics' Si photonics integration platform, the COSMICC project developed a CWDM Si-photonics transceiver in a packaged module at 100 Gb/s per fiber. It is scalable to 400 Gb/s and includes 3D assembly of a Si photonic chip and its electronic control chip. The Si photonic chip integrated high-performance 50 Gb/s NRZ optical modulators and photodetectors, and a two-channel CWDM multiplexer and demultiplexer. The control electronics was optimized to minimize energy consumption down to 5.7 picojoules/bit per channel at 50 Gb/s data rate.

Separately, a library of enabling building blocks for higher data-rate datacenter interconnects was built on a SiN-enhanced silicon photonics platform, including new broadband and athermal SiN components and hybrid III-V/Si lasers. SiN, which is 10 times less sensitive to temperature than Si, will dramatically reduce the transceiver cost and power consumption by eliminating the need for temperature control and will thus contribute to the reduction of the heat output and cooling costs of mega datacenters.

In addition to CEA-Leti, COSMICC consortium members include:

  • Industry: ST Microelectronics Italy and France, Vario-Optics, Seagate, Finisar
  • Academic and institutional: Université Paris Sud, Universita di Pavia, University of Southampton Optical Research Center, University of Saint Andrews, Cork Institute of Technology
  • Consultants: Ayming
To contact the author of this article, email engineering360editors@globalspec.com


Powered by CR4, the Engineering Community

Discussion – 0 comments

By posting a comment you confirm that you have read and accept our Posting Rules and Terms of Use.
Engineering Newsletter Signup
Get the Engineering360
Stay up to date on:
Features the top stories, latest news, charts, insights and more on the end-to-end electronics value chain.
Advertisement
Weekly Newsletter
Get news, research, and analysis
on the Electronics industry in your
inbox every week - for FREE
Sign up for our FREE eNewsletter
Advertisement
Find Free Electronics Datasheets
Advertisement