Laird has developed a smaller, more efficient option for precise thermal management in compact CO2 incubators using thermoelectric assemblies (TEAs). When employed with the advanced SR-54 temperature controller, thermoelectric assemblies use less energy to maintain the desired temperature range, lowering the cost of ownership when compared to standard compressor-based systems.
A cell culture incubator is designed to maintain a constant temperature and high humidity for the growth of tissue culture cells under a CO2 atmosphere. Typical temperature settings range from 4° C to 80° C, with relative humidity between 95% and 98% and CO2 concentrations ranging from 0.3% to 19.9%. Historically, temperature in CO2 incubators were controlled either by a water bath that circulated through the walls of the cabinet (water jacketed), compressor-based systems or by electric coils that gave off radiant heat. Modern units now use solid-state thermoelectric-based cooling for temperature control.
Laird's thermoelectric assemblies (TEAs), including the AA-230 Series and AA-250 Series, offer a high coefficient of performance (COP) to minimize power consumption when cooling or heating CO2 incubators. Based on a standard platform, TEAs can be customized to meet application requirements. These TEAs offer 230 Watts and 250 Watts of cooling power at Delta T=0°C respectively. Using impingement flow to transfer heat, the AA-230 and AA-250 Series offer dependable, compact performance by cooling objects via convection. The solid state construction requires less maintenance than standard compressor-based cooling systems.
Temperature stability is vital in CO2 incubators, and Laird’s TEAs, driven by the SR-54 programmable microcontroller, deliver temperature stability to within ± 0.15°C of the temperature set point in cooling and heating mode. With built-in monitoring and closed loop feedback control intelligence, the SR-54 temperature controller provides monitoring and alarm functionality, including identification of a problematic fan, thermoelectric module, over-temperature thermostat and temperature sensor failure -- all critical to maximizing CO2 incubator uptime.
The ready-to-use controller requires minimal programming out of the box and is easily attached to a TEA or system enclosure. The controller also lowers operational noise, as fans are turned off once the specified temperature has been reached inside the respective incubator column.