Industrial Electronics

Machine Learning Tool Can Identify Breast Lesions and Detect Cancer

17 October 2017

A new machine learning tool can identify which high-risk breast lesions are likely to become cancerous. Researchers said that this technology has the potential to reduce unnecessary surgeries and help detect cancer quicker than other methods.

High-risk breast lesions are biopsy-diagnosed lesions that carry an increased risk of developing into cancer. Because of this risk, surgical removal is the preferred treatment option. But many high-risk lesions don’t pose an immediate threat to a patient’s life and can be safely monitored with follow-up imaging. This method saves patients from having to pay a lot of money and stay away from complications associated with surgery.

Flow diagram shows patient selection. (Radiological Society of North America)Flow diagram shows patient selection. (Radiological Society of North America)

"There are different types of high-risk lesions," said study author and radiologist Manisha Bahl, M.D., M.P.H., from Massachusetts General Hospital (MGH) and Harvard Medical School, both in Boston. "Most institutions recommend surgical excision for high-risk lesions such as atypical ductal hyperplasia, for which the risk of an upgrade to cancer is about 20 percent. For other types of high-risk lesions, the risk of upgrade varies quite a bit in the literature, and patient management, including the decision about whether to remove or survey the lesion, varies across practices."

Dr. Bahl and colleagues at MGH studied the use of a machine learning tool to identify high-risk lesions that are at low risk for an upgrade to cancer. The study resulted from a collaboration between researchers at the Massachusetts Institute of Technology’s (MIT) Computer Science and Artificial Intelligence Laboratory in Cambridge, Massachusetts and breast imaging experts at MGH.

"Because diagnostic tools are inexact, there is an understandable tendency for doctors to over-screen for breast cancer," said co-author Regina Barzilay, Ph.D., the Delta Electronics professor of electrical engineering and computer science at MIT. "When there's this much uncertainty in data, machine learning is exactly the tool that we need to improve detection and prevent overtreatment."

Machine learning is a type of artificial intelligence where a model automatically learns and improves based on previous experiences. The model developed by researchers analyzed traditional risk factors like age and lesion histology, along with other features including words that appear in the text from the biopsy-proven high-risk lesions who had surgery or at least two-year imaging follow-up. Of the 1,006 high-risk lesions identified, 115, or 11 percent, were upgraded to cancer.

After training the machine learning model on two-thirds of the high-risk lesions, the researchers tested it on the remaining 335 lesions. The model correctly predicted 37 of the 38 lesions, or 97 percent, that were upgraded to cancer. The researchers found that use of the model would have helped avoid almost one-third of benign surgeries.

The machine-learning model identified the terms “severely” and “severely atypical” in the text of the pathology reports as associated with a greater risk of an upgrade to cancer.

"Our study provides 'proof of concept' that machine learning cannot only decrease unnecessary surgery by nearly one-third in this specific patient population but also can support more targeted, personalized approaches to patient care," said the paper's senior author, Constance Lehman, M.D., Ph.D., professor at Harvard Medical School and director of breast imaging at MGH.

"Our goal is to apply the tool in clinical settings to help make more informed decisions as to which patients will be surveilled and which will go on to surgery," Dr. Bahl added. "I believe we can capitalize on machine learning to inform clinical decision making and ultimately improve patient care."

A paper on this research was published in Radiology.

Powered by CR4, the Engineering Community

Discussion – 0 comments

By posting a comment you confirm that you have read and accept our Posting Rules and Terms of Use.
Engineering Newsletter Signup
Get the Engineering360
Stay up to date on:
Features the top stories, latest news, charts, insights and more on the end-to-end electronics value chain.
Weekly Newsletter
Get news, research, and analysis
on the Electronics industry in your
inbox every week - for FREE
Sign up for our FREE eNewsletter
Find Free Electronics Datasheets