Acquired Electronics360

Industrial Electronics

Bioinspired Polymers Get Their Charge From Electrostatic Force

02 November 2017

Inspired by the principles of natural polymer synthesis, Illinois chemical and biomolecular engineering professor Charles Sing, left, and graduate students Jason Madinya and Tyler Lytle co-authored a study that found they could create new synthetic materials by tuning the electrostatic charge of polymer chains. Source: L. Brian StaufferInspired by the principles of natural polymer synthesis, Illinois chemical and biomolecular engineering professor Charles Sing, left, and graduate students Jason Madinya and Tyler Lytle co-authored a study that found they could create new synthetic materials by tuning the electrostatic charge of polymer chains. Source: L. Brian Stauffer

Researchers from the University of Illinois and the University of Massachusetts, Amherst have taken steps towards gaining control over the self-assembly of synthetic materials in the same way that biology forms natural polymers. This could prove useful in designing new bioinspired, smart materials for applications ranging from drug delivery to sensing the remediation of environmental contaminants.

Proteins use amino acid building blocks to link together long molecular chains. The specific location of these building blocks, called monomers, within these chains creates sequences that dictate a polymer’s structure and function. The researchers discovered how to utilize the concept of monomer sequencing to control polymer structure and function by taking advantage of property present in natural and synthetic polymers' electrostatic charge.

"Proteins encode information through a precise sequence of monomers. However, this precise control over sequence is much harder to control in synthetic polymers, so there has been a limit to the quality and amount of information that can be stored," said Charles Sing, a professor of chemical and biomolecular engineering at Illinois and a study co-author. "Instead, we can control the charge placement along the synthetic polymer chains to drive self-assembly processes."

"Our study focuses on a class of polymers, called coacervates, that separate like oil and water and form a gel-like substance," said Sarah Perry, a study co-author and the University of Massachusetts, Amherst chemical engineering professor, as well as an Illinois alumni.

Through a series of experiments and computer simulations, the researchers found that the properties of the resulting charged gels can be tuned by changing the sequence of charges along the polymer chain.

"Manufacturers commonly use coacervates in cosmetics and food products to encapsulate flavors and additives, and as a way of controlling the 'feel' of the product," Sing said. "The challenge has been if they need to change the texture or the thickness, they would have to change the material being used."

Sing and Perry demonstrate that they can rearrange the structure of the polymer chains by tuning their charge to engineer the desired properties.

"This is how biology makes the endless diversity of life with only a small number of molecular building blocks," Perry said. "We envision bringing this bioinspiration concept full circle by using coacervates in biomedical and environmental applications."

The results of this research open a lot of opportunities to expand the diversity of polymers used and the scale of applications.

"Currently, we are working with materials on the macro scale — things that we can see and touch," Sing said. "We hope to expand this concept into the realm of nanotechnology, as well."

The paper on this research was published in Nature Communications.

To contact the author of this article, email Siobhan.Treacy@ieeeglobalspec.com


Powered by CR4, the Engineering Community

Discussion – 0 comments

By posting a comment you confirm that you have read and accept our Posting Rules and Terms of Use.
Engineering Newsletter Signup
Get the Engineering360
Stay up to date on:
Features the top stories, latest news, charts, insights and more on the end-to-end electronics value chain.
Advertisement
Weekly Newsletter
Get news, research, and analysis
on the Electronics industry in your
inbox every week - for FREE
Sign up for our FREE eNewsletter
Advertisement

CALENDAR OF EVENTS

Date Event Location
30 Nov-01 Dec 2017 Helsinki, Finland
23-27 Apr 2018 Oklahoma City, Oklahoma
18-22 Jun 2018 Honolulu, Hawaii
Find Free Electronics Datasheets
Advertisement