Acquired Electronics360

Semiconductors and Components

Heterostructural Alloys = Better Semiconductors

19 June 2017

Tin(IV) sulfide (Credit: Ktlabe, via Wikimedia Commons)Tin(IV) sulfide (Credit: Ktlabe, via Wikimedia Commons)It’s an area that’s largely understudied: heterostructural alloys, or blends of compounds made from materials that do not share the same atom arrangement. Further research into these alloys could lead to greater materials control – leading to better semiconductors, improved metallic glasses for industrial applications and advances in nanotechnology for pharmaceuticals.

Conventional alloys are isostructural, meaning they consist of compounds with the same crystal structure.

"This is a very interesting piece of materials science that represents a somewhat uncharted area and it may be the beginning something quite important," said Janet Tate, a physicist at Oregon State University. Tate gives an LED as an example of an isostructural alloy. “You have a semiconductor like aluminum gallium arsenide, dope it with a particular material and make it emit light, and change the color of the light by changing the relative concentration of aluminum and gallium,” she explained.

"If two materials have different structures, as you mix them together it's not so clear which structure will win," she added. "The two together want to take different structures, and so this is an extra way of tuning an alloy's properties, a structural way. The transition between different crystal structures provides an additional degree of control."

The primarily the NERL's theoretical work being supported by other collaborators' experimental work,

As part of a new study – comprised of theoretical work by the National Renewable Energy Laboratory and supported by collaborators' experimental work – Tate and graduate student Bethany Matthews have combined tin sulfide and calcium sulfide in order to focus on the semiconductor application.

"Tin sulfide is a solar cell absorber, and the addition of calcium sulfide changes the structure and therefore the electrical properties necessary for an absorber," Tate said.

In their study, thin-film synthesis confirmed something that had been predicted theoretically, related to the unstable, or metastable, phases of the alloys. "Many alloys are metastable… if you gave them enough time and temperature, they'd eventually separate," Tate explained. "The way we make them, with pulsed laser deposition, we allow the unstable structure to form, then suppress the decomposition pathways that would allow them to separate. We don't give them enough time to equilibrate."

Such metastable materials are thermodynamically stable as long as they are not subjected to large disturbances. Generally, Tate says, these are understudied.

"When theorists predict properties, they tend to work with materials that are stable," she noted. "In general the stable compounds are easier to attack. The idea here with heterostructural alloys is that they give us a new handle, a new knob to turn to change and control materials' properties."



Powered by CR4, the Engineering Community

Discussion – 0 comments

By posting a comment you confirm that you have read and accept our Posting Rules and Terms of Use.
Engineering Newsletter Signup
Get the Engineering360
Stay up to date on:
Features the top stories, latest news, charts, insights and more on the end-to-end electronics value chain.
Advertisement
Weekly Newsletter
Get news, research, and analysis
on the Electronics industry in your
inbox every week - for FREE
Sign up for our FREE eNewsletter
Advertisement

CALENDAR OF EVENTS

Date Event Location
30 Nov-01 Dec 2017 Helsinki, Finland
23-27 Apr 2018 Oklahoma City, Oklahoma
18-22 Jun 2018 Honolulu, Hawaii
Find Free Electronics Datasheets
Advertisement