Acquired Electronics360

Aerospace

Piezoelectric Technology Measures Magnetic Properties of Stressed Materials

09 December 2016

How the piezoelectric device applies stress to the test-material plates. Source: Fujitsu How the piezoelectric device applies stress to the test-material plates. Source: Fujitsu Fujitsu Laboratories Ltd. has announced the development of technology to measure the magnetic properties of materials when force (stress) is applied. This will be vital to enabling more advanced large-scale simulations of the kinds of magnetic fields found in the motors of electric vehicles (EVs).
Engines in EVs have numerous operating conditions, such as their rotational speed and need to be prototyped and tested repeatedly under these different conditions. Computer simulations could help make the design process more efficient and increase motor performance, but the simulations need to be able to accurately model energy losses arising from the magnetic fields of different materials, which can change considerably when stress is applied. This creates a need for a technology that can accurately measure the effects of stress.

By attaching a piezoelectric device to an electromagnetic steel test plate to create various states of stress, Fujitsu Laboratories has reportedly developed the world's first technology that measures the magnetic property called vector magnetic hysteresis—which reduces motor efficiency—in the presence of stress.

Fujitsu will be able to use this technology to obtain a wide variety of measurement data that are vital to the large-scale, multi-scale magnetic-field simulator that it is currently developing. This technology promises to promote the design of high-efficiency electric motors with low energy loss, and promote the development of material informatics, which is the development of materials with computer simulations.

Motors are said to account for some 40 to 50% of worldwide electric-power consumption. When motors are running, energy loss occurs due to the properties that the motor's constituent materials exhibit in relation to magnetism; improving the efficiency of all the electric motors in Japan by 1%, for example, would result in energy savings equivalent to the energy produced by one thermal-generation power plant. In addition, as electric motor-driven EVs become more prevalent, there is a growing demand for technologies that can improve motor efficiency.

The materials used in electric motors undergo a process in manufacturing called shrink-fitting, in which they are joined using heat and force; this process creates stress inside the material that persists. Simulations need to be able to accurately model the energy loss arising from the magnetic properties of a material, but it is known that those magnetic properties can change significantly when stress is applied, so there is a need to accurately measure the effects of stress. But because existing measuring devices for applying stress are large—about one meter square—and perform measurements on a large scale, a more compact and convenient measurement device that could gather a wide range of data more easily would be desirable.

Fujitsu Laboratories used a piezoelectric device with a shape that can change with the application of voltage, and that can produce force in a specific direction to flexibly control the stress on the material being measured (see figure).

Key features of the technology are as follows:

1. Technology to apply uniform stress to test material being measured

By attaching the piezoelectric device to the test material being measured using an adhesive, direct stress is applied to the area being measured. Because the test-material plate is a thin sheet, piezoelectric devices can be mounted to both sides, and by applying an equal stress to both sides, the test material's warpage can be controlled. In this way, stress is applied uniformly and with fine control based on voltages to the entire area being measured.

2. Compact instrument measures magnetic properties of material with stress applied

The common motor, known as an induction motor, can generate an internal electric field. Fujitsu Laboratories developed a Round Rotational Single Sheet Tester (RRSST) that measures vector magnetic hysteresis using a common, compact induction motor. The instrument has a simple structure and is small, measuring 30 cm square. By incorporating a structure in which it was possible to apply stress to the test materials and equipping it to the measuring instrument, Fujitsu Laboratories was able to easily measure vector magnetic hysteresis under various stress conditions.


This technology can obtain various measurements needed to implement accurate magnetic-field simulations that account for stress applied to materials. Implementing accurate magnetic-field simulations promises to greatly accelerate the development process of EV motors, and, for example, to reduce the number of prototypes—each of which incur high costs and a great many labor hours—needed to develop such equipment, from the current figure of around five to only one or two.

Fujitsu is developing FUJITSU Manufacturing Industry Solution EXAMAG LLG Simulator, a magnetic-field simulation software package that uses massively parallel computation. It is also currently working on next-generation magnetic-field simulations that can model the vector magnetic hysteresis properties of magnetic materials.

Fujitsu Laboratories plans to continue refining the capabilities for measuring vector magnetic hysteresis and will move forward on gathering different kinds of measurements. The goal is to incorporate the benefits of this technology into the next version of EXAMAG LLG Simulator being developed at Fujitsu and due out in 2018. This technology also promises to advance material informatics, which uses computer simulations in material development, and promises to contribute to less wasted energy as more efficient motors gain widespread adoption.



Powered by CR4, the Engineering Community

Discussion – 0 comments

By posting a comment you confirm that you have read and accept our Posting Rules and Terms of Use.
Engineering Newsletter Signup
Get the Engineering360
Stay up to date on:
Features the top stories, latest news, charts, insights and more on the end-to-end electronics value chain.
Advertisement
Weekly Newsletter
Get news, research, and analysis
on the Electronics industry in your
inbox every week - for FREE
Sign up for our FREE eNewsletter
Advertisement

CALENDAR OF EVENTS

Date Event Location
30 Nov-01 Dec 2017 Helsinki, Finland
23-27 Apr 2018 Oklahoma City, Oklahoma
18-22 Jun 2018 Honolulu, Hawaii
Find Free Electronics Datasheets
Advertisement