Acquired Electronics360

Industrial Electronics

New Cancer Treatment is Made of Self-Regulating Nanoparticles

24 October 2017

Cancer cell during division. Source: National Institutes of HealthCancer cell during division. Source: National Institutes of Health

Scientists from the University of Surrey have developed "intelligent" nanoparticles that heat up to a temperature that is high enough to kill cancer cells, then self-regulate and lose heat before they get hot enough to burn healthy tissue.

The self-stopping nanoparticles could be used as part of hyperthermic-thermotherapy to treat patients who have cancer.

Thermotherapy has been used as a treatment method for cancer for a while, but it is difficult to treat patients with this method without damaging healthy cells. But tumor cells can be weakened or killed without affecting normal tissue if temperatures can be controlled accurately within a range of 42 to 45 degrees Celsius.

Scientists from Surrey’s Advanced Technology Institute have worked with colleagues from the Dalian University of Technology in China to create nanoparticles that can induce temperatures of up to 45 degrees Celsius when implanted and used in thermotherapy.

The zinc-cobalt-chromium ferrite nanoparticles produced for this study are self-regulating. This means they self-stop heating when they reach temperatures over 45 degrees Celsius. The nanoparticles are also low in toxicity and are unlikely to cause permanent damage to the body.

Professor Ravi Silva, Head of the Advanced Technology Institute at the University of Surrey, said, “This could potentially be a game changer in the way we treat people who have cancer. If we can keep cancer treatment set at a temperature level high enough to kill cancer, while low enough to stop harming healthy tissue, it will prevent some of the serious side effects of vital treatment. It's a very exciting development which, once again, shows that the University of Surrey research is at the forefront of nanotechnologies — whether in the field of energy materials or, in this case, healthcare."

Dr. Wei Zhang, Associate Professor from the Dalian University of Technology said, "Magnetic induced hyperthermia is a traditional route of treating malignant tumors. However, the difficulties in temperature control have significantly restricted its usage if we can modulate the magnetic properties of the nanoparticles, the therapeutic temperature can be self-regulated, eliminating the use of clumsy temperature monitoring and controlling systems."

"By making magnetic materials with the Curie temperature falling in the range of hyperthermia temperatures, the self-regulation of therapeutics can be achieved. For the most magnetic materials, however, the Curie temperature is much higher than the human body can endure. By adjusting the components as we have, we have synthesized the nanoparticles with the Curie temperature as low as 34oC. This is a major nanomaterials breakthrough."

A paper on this research was published in Nanoscale.

To contact the author of this article, email Siobhan.Treacy@ieeeglobalspec.com


Powered by CR4, the Engineering Community

Discussion – 0 comments

By posting a comment you confirm that you have read and accept our Posting Rules and Terms of Use.
Engineering Newsletter Signup
Get the Engineering360
Stay up to date on:
Features the top stories, latest news, charts, insights and more on the end-to-end electronics value chain.
Advertisement
Weekly Newsletter
Get news, research, and analysis
on the Electronics industry in your
inbox every week - for FREE
Sign up for our FREE eNewsletter
Advertisement

CALENDAR OF EVENTS

Date Event Location
30 Nov-01 Dec 2017 Helsinki, Finland
23-27 Apr 2018 Oklahoma City, Oklahoma
18-22 Jun 2018 Honolulu, Hawaii
Find Free Electronics Datasheets
Advertisement