Acquired Electronics360

Display Materials and Components

Gamma Rays Can Go Past the Limits of Light

20 October 2017

Researchers have discovered a way to produce high energy photon beams. This method makes it possible to produce gamma rays in a highly efficient way when compared to today’s technique. The obtained energy is a billion times higher than the energy of photons in visible light. High-intensity gamma rays significantly exceed all known limits of light and will pay the way towards new fundamental studies.

"When we exceed the limit of what is currently possible, we can see deeper into the basic elements of nature. We can dive into the deepest part of the atomic nuclei," said Arkady Gonoskov, a researcher at the Department of Physics at Chalmers University of Technology.

Gamma rays are electromagnetic waves, just like visible light or X-rays, but with much higher energy. The most energetic gamma rays in the world could be created by the help of advanced laser physics. When the laser light is intense enough and all parameters are right, trapped particles (green) could efficiently convert the laser energy (surfaces in red, orange and yellow) into cascades of super-high energy photons (pink). (Arkady Gonoskov)Gamma rays are electromagnetic waves, just like visible light or X-rays, but with much higher energy. The most energetic gamma rays in the world could be created by the help of advanced laser physics. When the laser light is intense enough and all parameters are right, trapped particles (green) could efficiently convert the laser energy (surfaces in red, orange and yellow) into cascades of super-high energy photons (pink). (Arkady Gonoskov)

This new method is the outcome of collaboration between Chalmers University of Technology in Sweden, Institute of Applied Physics and Lobachevsky University in Russia and the University of Plymouth in the UK. Physicists in different fields have managed to work out the numerical models and analytic estimates for simulating the ultra-strong gamma rays in a new and somehow unexpected way.

In normal cases, if a laser pulse is shot at an object, all the particles scatter. But if the laser light is intense enough and all parameters are right, the researchers found that the particles are trapped instead. They form a cloud where particles of matter and antimatter are created and start to behave in a special and unusual way.

"The cloud of trapped particles efficiently converts the laser energy into cascades of high energy photons - phenomena that is very fortunate. It's an amazing thing that the photons from this source can be of such high energy," said Mattias Marklund, a professor at the Department of Physics at Chalmers.

The discovery is highly relevant for the future large-scale facilities that are currently under development. The most intense light sources on earth will be produced in these research facilities that are as big as football fields.

"Our concept is already part of the experimental program proposed for one such facility: Exawatt Center for Extreme Light Studies in Russia. We still don't know where these studies will lead us, but we know that there are yet things to be discovered within nuclear physics, for example, new sources of energy. With fundamental studies, you can aim at something and end up discovering something completely different - which is more interesting and important," said Gonoskov.

A paper on this research was published in Physical Review X

To contact the author of this article, email Siobhan.Treacy@ieeeglobalspec.com


Powered by CR4, the Engineering Community

Discussion – 0 comments

By posting a comment you confirm that you have read and accept our Posting Rules and Terms of Use.
Engineering Newsletter Signup
Get the Engineering360
Stay up to date on:
Features the top stories, latest news, charts, insights and more on the end-to-end electronics value chain.
Advertisement
Weekly Newsletter
Get news, research, and analysis
on the Electronics industry in your
inbox every week - for FREE
Sign up for our FREE eNewsletter
Advertisement

CALENDAR OF EVENTS

Date Event Location
30 Nov-01 Dec 2017 Helsinki, Finland
23-27 Apr 2018 Oklahoma City, Oklahoma
18-22 Jun 2018 Honolulu, Hawaii
Find Free Electronics Datasheets
Advertisement